

Tetrahedron Letters 43 (2002) 1213-1215

TETRAHEDRON LETTERS

A rapid access to coumarin derivatives (using Vilsmeier–Haack and Suzuki cross-coupling reactions)

Stéphanie Hesse and Gilbert Kirsch*

Laboratoire d'Ingénierie Moléculaire et de Biochimie Pharmacologique, Faculté des Sciences, Ile du Saulcy, 57045 Metz Cedex, France

Received 4 December 2001; accepted 14 December 2001

Abstract—A four-step preparation of compounds containing a coumarinic moiety is presented. This synthesis involves notably a Suzuki cross-coupling reaction (performed in aqueous media) and a ring closure by formation of δ -lactone. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Several polycyclic natural products with a coumarinic moiety display a large number of biological properties (anti-bacterial,¹ anti-tumoral,² anti-HIV³...). Due to those varied biological activities, a considerable amount of synthetic work in the field of coumarins with [3,4]-carbocyclic or [3,4]-heterocyclic fused ring systems has been done⁴. Classical reactions (such as Pechmann condensation, Michaël addition...) are still used but the development of palladium-catalyzed cross-coupling reactions

offers new synthetic possibilities. For example, the synthesis of defucogilvocarcins was reported the same year by two different approaches⁵ (Scheme 1). The cross-coupling methodology can be used in the ring-closure step or in the formation of the biaryl system.⁶ We present here a rapid access to polycyclic compounds containing a coumarinic moiety. (Scheme 2). A key connection to the target molecules is the closure of ring C by formation of the δ -lactone. Another important step of this retrosynthetic pathway is the cross-coupling reaction between β -chloroacroleins and boronic acids.

Scheme 1.

Keywords: coumarin; palladium catalysis; β-chloroacroleins; Vilsmeier–Haack reaction. * Corresponding author: Tel.: +(33) 3 87 31 52 95; e-mail: kirsch@sciences.univ-metz.fr

^{0040-4039/02/\$ -} see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)02373-5

Scheme 2.

2. Results and discussion

β-Chloroacroleins 1 (a–d) are easily synthesized from the corresponding ketones by a Vilsmeier–Haack– Arnold reaction.⁷ Those vinyl chlorides activated by the presence of an electron-withdrawing group allow good yields in coupling with boronic acids under mild conditions:⁸ reactions were performed in aqueous media in presence of 2 mol% of palladium(II) acetate, tetrabutylammonium bromide and potassium carbonate; they were almost complete after three hours at 45°C (Scheme 3).

Oxidation of aldehydes 2 (a–d) with sodium chlorite⁹ in the presence of 30% H₂O₂ in acetonitrile at room temperature allowed the formation of acids 3 (a–d). Treatment of the corresponding acyl chlorides with aluminum chloride in dichloromethane at room temperature led to the desired tetracyclic systems 4 $(a-d)^{10}$ (Scheme 3 and Table 1).

3. Conclusion

An easy access to β -chloroacroleins and boronic acids associated to mild procedures in this four-step synthesis allowed us the preparation of new coumarin derivatives with moderate to good yields: compounds **4a** and **4b** are obtained, respectively from α -tetralone and 5,7dimethyl-1-tetralone with only 25 and 29% yield whereas products **4c** and **4d** are, respectively synthesized from **4***H*-chromanone and 3,4-dihydro-2*H*-benzo[*b*]oxepin-5-one with 62 and 53% of global yield.

Scheme 3.

Table	1
I able	1.

R	Х	п	1 (Yield)	2 (Yield)	3 (Yield)	4 (Yield)
Н	CH ₂	1	1a (95)	2a (75)	3a (86)	4a (40)
Me	CH ₂	1	1b (96)	2b (89)	3b (96)	4b (35)
Н	0	1	1c (96)	2c (98)	3c (69)	4c (96)
Н	0	2	1d (85)	2d (86)	3d (90)	4d (80)

References

- (a) El-Sayed, A. M.; Ghattas, A.-B.; El-Wassimy, M. T.; Abd Allah, O. A. *Il Farmaco* 1999, 54, 56; (b) Musicki, B.; Periers, A.-M.; Laurin, P.; Ferroud, D.; Benedetti, Y.; Lachaud, S.; Chatreaux, F.; Haesslein, J.-L.; Iltis, A.; Pierre, C.; Khider, J.; Tessot, N.; Airault, M.; Demassey, J.; Dupuis-Hamelin, C.; Lassaigne, P.; Bonnefoy, A.; Vicat, P.; Klich, M. *Bioorg. Med. Chem. Lett.* 2000, 10, 1695.
- Ito, C.; Itoigawa, M.; Katsuno, S.; Omura, M.; Tokuda, H.; Nishino, H.; Furukawa, H. J. Nat. Prod. 2000, 639, 1218.
- (a) Kashman, Y.; Gustafson, K. R.; Richard, W.; Cardellina, J.; McMahon, J. B. J. Med. Chem. 1992, 35, 2735;
 (b) McKee, T. C.; Fuller, R. W.; Covington, C. D.; Cardellina, J. H.; Gulakowski, R. J.; Krepps, B. L.; McMahon, J. B.; Boyd, M. R. J. Nat. Prod. 1996, 59, 754;
 (c) Ishikawa, T.; Oku, Y.; Tanaka, T.; Kumamoto, T. Tetrahedron Lett. 1999, 40, 3777;
 (d) Tanaka, T.; Kumamoto, T.; Ishikawa, T. Tetrahedron Lett. 2000, 41, 10229.
- 4. Darbarwar, M.; Sundaramurthy, V. Synthesis 1982, 5, 337.
- (a) Hua, D. H.; Saha, S.; Maeng, J. C.; Bensoussan, D. Synlett 1990, 233; (b) Deshpande, P. P.; Martin, O. R. Tetrahedron Lett. 1990, 6313.
- 6. James, C. A.; Snieckus, V. Tetrahedron Lett. **1997**, *38*, 8149.
- Arnold, Z.; Zemlicka, J. Collect. Czech. Chem. Commun. 1959, 24, 2385.
- 8. Hesse, S.; Kirsch, G. Synthesis 2001, 5, 755.
- 9. Montanari, F. J. Org. Chem. 1986, 51, 567.
- Data for tetracyclic systems 4 (a-d): ¹H and ¹³C NMR spectra were recorded on a AC Bruker 250 MHz spectrometer in CDCl₃. Mass spectra were
 - obtained on a Hewlett–Packard 5971 A GCMS instrument with an ionization voltage of 70 eV.

7,8-Dihydro-naphtalen[**1,2-***c*]**chromen-6-one 4a**: yellow oil; $\delta_{\rm H}$ (CDCl₃): 2.74–2.85 (m, 4H), 7.29 (ddd, 1H, *J*=7.6 7.5 and 1.2 Hz), 7.34–7.42 (m, 4H), 7.51 (ddd, 1H, *J*=7.8 7.5 and 1.1 Hz), 7.82 (dd, 1H, *J*=8.0 and 1.9 Hz), 8.03 (dd, 1H, *J*=8.0 and 0.8 Hz); $\delta_{\rm C}$ (CDCl₃): 22.54 (CH₂), 28.45 (CH₂), 117.89 (CH), 118.03 (C), 124.19 (CH), 124.60 (C), 126.71 (CH), 126.74 (CH), 128.32 (CH), 128.87 (CH), 130.42 (CH), 130.72 (C), 130.81 (CH), 140.49 (C), 144.74 (C), 153.76 (C), 162.00 (CO₂); *m/z* (%): 248 (100), 203 (27)

9,10-Dimethyl-7,8-dihydro-naphtalen[**1,2-***c*] **chromen-6-one 4b**: yellow oil; $\delta_{\rm H}$ (CDCl₃): 2.38 (s, 6H, 2Me), 2.72 (sl, 4H, 2CH₂), 7.12 (s, 1H), 7.29 (dd, 1H, *J*=7.7 and 7.4 Hz), 7.39 (d, 1H, *J*=8.1 Hz), 7.47–7.52 (m, 2H), 7.99 (d, 1H, *J*=8.1 Hz); $\delta_{\rm C}$ (CDCl₃): 20.22 (CH₃), 21.63 (CH₃), 22.42 (CH₂), 23.71 (CH₂), 117.87 (CH), 118.36 (C), 124.17 (CH), 124.26 (C), 126.96 (CH), 127.04 (CH), 130.61 (C), 130.69 (CH), 133.36 (CH), 135.40 (C), 135.92 (C), 136.03 (C), 145.42 (C), 153.81 (C), 162.75 (CO₂); *m*/*z* (%): 276 (100), 275 (79), 233 (17)

Benzopyrano[3,4-c]chromen-6-one 4c: yellow solid; mp: 125°C; $\delta_{\rm H}$ (CDCl₃): 5.03 (s, CH₂O), 7.15–7.21 (m, 2H), 7.35 (ddd, 1H, J=7.9 7.4 and 1.3 Hz), 7.42–7.48 (m, 2H), 7.58 (ddd, 1H, J=7.8 7.7 and 1.2 Hz), 7.91 (dd, 1H, J=7.2 and 1.5 Hz), 8.12 (d, 1H, J=8.2 Hz); $\delta_{\rm C}$ (CDCl₃): 63.42 (CH₂O), 116.51 (C), 117.85 (CH), 118.33 (CH), 118.67 (C), 120.09 (C), 122.11 (CH), 124.31 (CH), 126.19 (CH), 127.73 (CH), 131.34 (CH), 132.40 (CH), 140.94 (C), 153.92 (C), 157.73 (C), 158.94 (CO₂)

2,3-Dihydro-benzo[*b*]**oxepine**[**4,5-***c***]chromen-6-one 4d**: colorless solid; mp: 167°C; $\delta_{\rm H}$ (CDCl₃): 2.39–2.53 (m, 1H), 3.18–3.26 (m, 1H), 4.49–4.67 (m, 2H), 7.18–7.28 (m, 2H), 7.31–7.40 (m, 2H), 7.44–7.53 (m, 3H), 7.61 (dd, 1H, *J*=8.0 and 1.2 Hz); $\delta_{\rm C}$ (CDCl₃): 26.29 (CH₂), 79.92 (CH₂O), 117.67 (CH), 119.04 (C), 123.50 (C), 124.01 (CH), 124.54 (CH), 124.55 (CH), 126.82 (CH), 129.40 (C), 130.55 (CH), 131.50 (CH), 131.80 (CH), 148.73 (C), 154.09 (C), 156.51 (C), 161.71 (CO₂); *m*/*z* (%): 264 (52), 249 (100)